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ABSTRACT  
We introduce the concept of the total edge fixing edge-to-vertex detour setof a connected graph G. Let e be an edge 

of a graph G. A set S(e)  E(G) − {e}is called an edge fixing edge-to-vertex detour set of a connected graph G if 

every edge of G lies on an e –  f  detour, where f  S(e). The edge fixing edge-to-vertex detour number defev(G) of 

G is the minimum cardinality of its edge fixing edge-to-vertex detour sets and any edge fixing edge-to-vertex detour 

set of cardinality  dnefev (G)  is an defev -set of G.  Connected graphs of order p with edge fixing edge-to-vertex 

detour number 1 or q − 1  are characterized. Theedge fixing edge-to-vertex detour number for some standard graphs 

are determined.  It is shown that for every pair of positive integers with 2 ≤  a ≤  b, there exists a connected graph 

G such that dnev (G)  =  a and dnefev (G)  =  b, for some edge e  E(G).. 
 

Keywords: detour set ,edge-to-vertex detour  set , edge fixing  edge –to-vertex detour set,edge fixing  edge - to 

vertex detour set,edge fixing  edge - to - vertex detour number. 
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I. INTRODUCTION 

 
For a graph 𝐺 = (𝑉,𝐸), we mean a finite undirected graph without loops or multiple edges. The order and size of 𝐺 

are denoted by 𝑝 and 𝑞 respectively. We consider connected graphs with at least two vertices. For basic definitions 

and terminologies we refer to [1,4].For vertices 𝑢 and 𝑣 in a connected graph 𝐺, the detour distance𝐷(𝑢, 𝑣) is the 

length of the longest 𝑢 − 𝑣 path in 𝐺.A 𝑢 − 𝑣 path of length 𝐷(𝑢, 𝑣)  is called a 𝑢 − 𝑣detour. It is known that the 

detour distance is a metric on the vertex set 𝑉(𝐺). The detour eccentricity𝑒𝐷(𝑣) of a  vertex 𝑣 in G is the maximum 

detour distance form 𝑣 to a vertex of 𝐺.The detour radius,𝑟𝑎𝑑𝐷𝐺𝑜𝑓𝐺is the minimum detour eccentricity among the 

vertices of 𝐺, while the detour diameter, 𝑑𝑖𝑎𝑚𝐷𝐺of 𝐺 is the maximum detour eccentricity among the vertices of 

𝐺. These concept were studied by Chartrand et al.[2]. Let 𝐺 =  (𝑉, 𝐸) be a connected graph with at least 3 vertices. 

A set S  E is called an edge-to-vertex detour set if every vertex of 𝐺 is either incident with an edge of 𝑆 or lies on a 

detour joining a pair of edges of 𝑆. The edge-to-vertex detour number𝑑𝑒𝑣 (𝐺) of 𝐺 is the minimum cardinality of its 

edge-to-vertex detour sets and any edge-to-vertex detour set of cardinality 𝑑𝑒𝑣 (𝐺) is an edge-to-vertex detour𝑑𝑒𝑣 -set 

of 𝐺.  

 

Theorem 1.1[6]    

Every pendant edge of a connected graph 𝐺 belongs to every edge-to-vertex detour set of 𝐺. 
 

Theorem 1.2[6]    

For any non-trivial tree 𝑇 with pendant edges, 𝑑𝑒𝑣 (𝑇)  =  𝑘 and the set of all pendant edges of 𝑇 is the unique 

minimum edge-to- vertex detour set of 𝑇. 
 

II. THE EDGE FIXING EDGE-TO-VERTEX  DETOUR 

 
Number of  a Graph 

Definition 2.1 

Let 𝑒 be an edge of a graph 𝐺. A set 𝑆(𝑒)  ⊆  𝐸(𝐺)  − {𝑒} is called an edge fixing edge-to-vertex detour set of a 

connected graph 𝐺 if every edge of 𝐺 lies on an 𝑒 –  𝑓  detour, where 𝑓 ∈  𝑆(𝑒). The edge fixing edge-to-vertex 
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detour number 𝑑𝑒𝑓𝑒𝑣 (𝐺) of 𝐺 is the minimum cardinality of its edge fixing edge-to-vertex detour sets and any edge 

fixing edge-to-vertex detour set of cardinality 𝑑𝑒𝑓𝑒𝑣(𝐺)  is an 𝑑𝑒𝑓𝑒𝑣  -set of 𝐺. 

Example 2.2  

For the graph𝐺 given in Figure 2.1, the edge fixing edge-to-vertex detour sets of each edge of 𝐺 is given in the 

following Table 2.1.  

 

 
 

Table 2.1 

Fixing Edge 

(e) 

Minimum edge  fixing edge-to-vertex  

detour sets (S(e)) 
𝒅𝒆𝒇𝒆𝒗(𝑺(𝒆)) 

v1v2 {𝑣2𝑣6},{𝑣6𝑣7} 1 

v2v3 {𝑣1𝑣2 , 𝑣6𝑣7} 2 

v3v4 {𝑣1𝑣2 , 𝑣4𝑣5} 2 

v4v5 {𝑣1𝑣2 , 𝑣3𝑣4} 2 

v2v5 {𝑣1𝑣2 , 𝑣6𝑣7} 2 

v6v2 {𝑣1𝑣2} 1 

 

Remark 2.3  

For a connected graph 𝐺, the edge 𝑒 of 𝐺 does not belong to the edge fixing edge-to- vertex detour set 𝑆(𝑒). Also the 

edge fixing edge-to- vertex detour set of an edge e is not unique. For the graph 𝐺 given in Figure 6.1, the edge fixing 

edge-to- vertex detour sets of the edge v1v2are {𝑣6𝑣7}, {𝑣2𝑣6}.  

 

III. SOME RESULTS ON THE EDGE FIXING EDGE-TO-VERTEXDETOURNUMBER OF  

A GRAPH 
 

Theorem 2.4  

 Let 𝑒 be an edge of 𝐺. Let f be a pendant edge of a connected graph 𝐺such that e ≠ 𝑓. Then every edge fixing edge-

to- vertex detour set of 𝑒of 𝐺 contains f. 

 

Proof.   Since 𝑒 ≠ 𝑓, 𝑓 is a terminal edge of a detourhence fbelongs to every edge fixing edge-to- vertex detour set 

of 𝑒of𝐺.  ∎ 
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Theorem 2.5    

Let 𝐺 be a connected graph and 𝑆(𝑒) be an edge fixing edge-to- vertex detour set of 𝑒of 𝐺. Let 𝑓  be a non-pendant 

cut edge of 𝐺and  let𝐺1  and 𝐺2  be the two component of 𝐺 – {𝑓 }. If 𝑒 =  𝑓, then each of the two component of 

𝐺 – {𝑓} contains an element of 𝑆(𝑒). If 𝑒 𝑓, then 𝑆(𝑒) contains at least one edge of component of 𝐺 – {𝑓 } where 𝑒 

does not lie. 

 

Proof.   Let 𝑓 =  𝑢𝑣. Let 𝐺1and 𝐺2  be the two component of 𝐺 – {𝑓} suchthat𝑢 ∈ 𝑉(𝐺1 )and ∈ 𝑉 𝐺2 .Let 𝑒 =  𝑓. 
Suppose that 𝑆(𝑒) does not contain any element of 𝐺1 . Then𝑆 𝑒 ⊆ 𝐸 𝐺2 .Let ℎ be an edge of 𝐸(𝐺1 ). Then h must 

lie on an 𝑒– 𝑓′detourforsome 𝑓′𝑆(𝑒). But such a detour P: v, v1, v2,…,vl, v, u, u1, u2,…, us, u, v, v1, v2,…, v where 

𝑣1 , 𝑣2 , … , 𝑣𝑙 ∈ 𝑉(𝐺2) , 𝑢1 , 𝑢2 , … , 𝑣𝑠 ∈ 𝑉(𝐺1 ) and v is an end of  𝑓 has the cut-edge f twice, hence it is a 

contradiction. This proves the theorem.By similar argument, we can prove that if 𝑒 𝑓, then 𝑆(𝑒) contains at least 

one edge from a component of 𝐺 – {𝑓} where 𝑒 does not lie.  ∎ 

 

Theorem 2.6  

Let 𝐺 be a connected graph and 𝑆(𝑒) be a minimum edge fixing edge-to- vertex detour set of an edge 𝑒of 𝐺. Then 

no non-pendant cut-edge of 𝐺 belongs to 𝑆(𝑒). 
 

Proof.Let 𝑆(𝑒) be an edge fixing edge-to- vertex detour set of an edge 𝑒 =  𝑢𝑣of 𝐺. Let 𝑓 =  𝑢𝑣 be a non-pendant 

cut-edge of 𝐺 such that 𝑓 𝑆(𝑒). Since 𝑒  𝑓, let 𝐺1  and 𝐺2  be the two component of 𝐺 - {𝑓} such that 𝑢 ∈ 𝑉(𝐺1 ) 

and 𝑣 ∈ 𝑉(𝐺2 ). By Theorem6.5, 𝐺1  contains an edge 𝑥𝑦and 𝐺2  contains an edge 𝑥𝑦 where 𝑥𝑦, 𝑥𝑦𝑆(𝑒). Let 

𝑆(𝑒)  =  𝑆(𝑒)- {𝑓 }. We claim that S (e) is an edge fixing edge-to- vertex detour set of an edge eof 𝐺. 

 

Case 1.  Suppose that 𝑒 =  𝑥𝑦 is an edge in 𝐺1  and 𝑥𝑦 is an edge in 𝐺2 .  Let ℎ be avertexof 𝐺. Assume without 

loss of generality that ℎ =  𝑤𝑧belongs to 𝐺1 . Since 𝑢𝑣 is a cut-edge of 𝐺, every path joining an edge of 𝐺1  with an 

edge of 𝐺2  contains the edge 𝑢𝑣. Suppose that ℎ is adjacent with 𝑢𝑣 or the edge 𝑥𝑦 of 𝑆(𝑒) or that lies on a detour 

joining 𝑥𝑦and 𝑢𝑣. If ℎ is adjacent with 𝑢𝑣,then 𝑧 =  𝑢. Let  𝑃 ∶  𝑥, 𝑦, 𝑦1 , 𝑦2, . . . , 𝑤, 𝑧 =  𝑢beaxy uv detour. 

Let 𝑄: 𝑢, 𝑣, 𝑣1, 𝑣2, … , 𝑥’, 𝑦’ 𝑎 𝑢𝑣-𝑥𝑦 detour. Then, it is clear that 𝑃 followed by 𝑢𝑣 and 𝑄 is a 𝑥𝑦-𝑥𝑦 detour. 

Thus ℎ lies on the 𝑥𝑦-𝑥𝑦 detour. If ℎ is adjacent with 𝑥𝑦, then there is nothing to prove. If ℎ lies on a 

𝑥𝑦-𝑥𝑦detour, say 𝑥, 𝑦, 𝑣1 , 𝑣2 , … ,𝑤, 𝑧,… , 𝑢, 𝑣, then let 𝑢, 𝑣, 𝑣1, 𝑣2, … , 𝑦 be 𝑢𝑣-𝑥𝑦detour. 

Thenclearly𝑥, 𝑦, 𝑣1 , 𝑣2 , . . . , 𝑤, 𝑧, . . ., 𝑢, 𝑣, 𝑣1, 𝑣2, . . . , 𝑥, 𝑦is a 𝑥𝑦-𝑥𝑦detour. Thus ℎ lies on a detour joining𝑥𝑦and 

an element of 𝑆 (𝑒). Thus we have proved that an edge that is adjacent with 𝑢𝑣 or an edge of 𝑆(𝑒) or that lies on a 

detour joining 𝑥𝑦 and 𝑢𝑣 of  𝑆(𝑒) also is adjacent with an edge of 𝑆 (𝑒) or lies on a detour joining 𝑒 and an edge 

of 𝑆(𝑒). Hence it follows that 𝑆 (𝑒) is an edge fixing edge-to- vertex detour set of an edge 𝑒 of 𝐺 such that 

|𝑆(𝑒)|  =  |𝑆(𝑒)| - 1, which is a contradiction to the minimality of 𝑆(𝑒). 
 

Case 2.Suppose that 𝑒 =  𝑥𝑦 ∈ 𝐺2 .The proof is similar to that of Case 1. Hence the theorem follows.   ∎ 

 

Theorem 2.7   

For any non-trivial tree 𝑇 with 𝑘end edges,  

𝑑𝑒𝑓𝑒𝑣  𝐺 =


 

Gek

Gek

 of edge internalan  is  if

 of edge endan  is  if1
. 

 

Proof.    This follows from Theorem 2. 4 and Theorem 2. 6.   ∎ 

 

Theorem 2.8   

For the graph 𝐺 =  𝐶𝑝(𝑝 ≥  4), 𝑑𝑒𝑓𝑒𝑣  𝐺 = 1, for any edge 𝑒 of 𝐸(𝐺). 
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Proof. Let 𝐶𝑝 : 𝑣1 , 𝑣2 , 𝑣3 , … , 𝑣𝑝  be the cycle. Let 𝑒be an edge of 𝐶𝑝and 𝑓  be an edge adjacent to 𝑒. Then it follows 

that {𝑓 } is an edge fixing edge-to- vertex detour set of an edge 𝑒of 𝐶𝑝 . Hence 𝑑𝑒𝑓𝑒𝑣  𝐶𝑝 = 1.   ∎ 

 

Theorem 2.9  

For the complete graph 𝐾𝑝 𝑝 ≥ 4 , 𝑑𝑒𝑓𝑒𝑣  𝐺 = 1 for every edge in 𝐸(𝐺). 

Proof.  We observe that all the edges of 𝐾𝑝can be considered as the edges of 𝐶𝑝and every edge joining the points 

of 𝐶𝑝 . Let ebe an edge of 𝐶𝑝and  𝑓  be an edge adjacent to 𝑒. Then it follows that {𝑓 } is an edge fixing edge-to-

vertex detour set of an edge 𝑒 of 𝐶𝑝 .Hence 𝑑𝑒𝑓𝑒𝑣  𝐾𝑝 = 1.∎ 

 

Theorem 2.10  

Let 𝐺 be a connected graph with at least three vertices. Then 1 ≤ 𝑑𝑒𝑓𝑒𝑣  𝐺 ≤ 𝑞 − 1. 

 

Proof.  For any edge e in G, an edge fixing edge-to-vertex detour set needs at least one edge of 𝐺 so that 

𝑑𝑒𝑓𝑒𝑣 (𝐺) ≥ 1. For an edge 𝑒 ∈  𝐸(𝐺), 𝐸(𝐺) – {𝑒} is an edge fixing edge-to-vertex detour set of e of 𝐺 so that 

𝑑𝑒𝑓𝑒𝑣  𝐺 ≤ 𝑞 − 1. Therefore 1 ≤ 𝑑𝑒𝑓𝑒𝑣  𝐺 ≤ 𝑞 − 1.  ∎ 

 

Remark 2.11  

The bounds in Theorem 2.10 are sharp. For the cycle 𝐺 =  𝐶𝑝  (𝑝 ≥  4), for an edge 𝑒, any edge which is adjacent 

to𝑒 is its minimum edge fixing edge-to-vertex detour set of 𝑒 of 𝐺 so that 𝑑𝑒𝑓𝑒𝑣  𝐺 = 1. For the star 𝐺 =  𝐾1,𝑞 , for 

an edge 𝑒, the set of edges 𝐸(𝐺)  − {𝑒} is the unique edge fixing edge-to-vertex detour set of 𝑒 of 𝐺 so that 

𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑞 − 1 . Thus the star 𝐾1,𝑞  has the largest possible edge fixing edge-to-vertex detour number 𝑞 −  1 and 

the cycle 𝐺 =  𝐶𝑝  (𝑝 ≥  4),  has the smallest edge fixing edge-to-vertex detour number 1. Also the bounds in 

Theorem 2.10 is strict. For the graph 𝐺 given in Figure 2.1, for the edge 𝑒 =  𝑣3𝑣4, 𝑑𝑒𝑓𝑒𝑣  𝐺 = 2 so that  1 <

𝑑𝑒𝑓𝑒𝑣  𝐺 < 𝑞 − 1.  

 

Theorem 2.12   

Let 𝐺 be a connected graph of size 𝑞 ≥  3, such that 𝐺 is neither a star nor a double star. Then 𝑑𝑒𝑓𝑒𝑣  𝐺 ≤ 𝑞 − 2 for 

every 𝑒 ∈ 𝐸(𝐺). 
 

Proof.  

Case 1.   Suppose that 𝐺 is a tree such that 𝐺is neither a star nor a double star. Then by Theorem 2.7,𝑑𝑒𝑓𝑒𝑣  𝐺 ≤

𝑞 − 2, for every 𝑒 ∈ 𝐸(𝐺).  
 

Case  2.   Suppose that 𝐺 is not a tree. Then 𝐺 contains at least one cycle, say 𝐶. Let e be an edge of 𝐺 

 

Subcase 2a.Suppose that𝑒 ∈ 𝐸(𝐶). Then 𝑆(𝑒)  =  𝐸(𝐺) – 𝐸(𝐶)is an edge fixing edge-to-vertex detour set of an 

edge e of 𝐺 so that 𝑑𝑒𝑓𝑒𝑣  𝐺 ≤ 𝑞 − 2. 

 

Subcase 2b. Suppose that𝑒 ∉ 𝐸(𝐶). Then setting 𝑆(𝑒)  =  𝐸(𝐺) – 𝐸(𝐶) – {𝑒} and by the similar argument in 

Subcase2a we can prove that 𝑑𝑒𝑓𝑒𝑣  𝐺 ≤ 𝑞 − 2. Hence the proof. ∎ 

 

Remark 2.13 

The bound in Theorem2.12 is sharp. For the graph 𝐺 =  𝐶3 , it is easily verified that 𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑞 − 2 for every 

edge 𝑒of 𝐺. 

 

Theorem 2.14 

Let 𝐺be a connected graph of size 𝑞 ≥  2 and 𝑒 ∈ 𝐸(𝐺). Then 𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑞 − 1 if and only if 𝑒 is an edge of 𝐾1,𝑞  

or 𝑒 is an internal edge of a double star. 
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Proof.  Let 𝐺 be a connected graph. If 𝑒 is an edge of 𝐾1,𝑞 , then by Theorem 2.7,𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑞 − 1. If 𝑒 is an 

internal edge of a double star, then by Theorem 2.7,𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑞 − 1 . 

Conversely, let 𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑞 − 1 for an edge  𝑒 ∈ 𝐸(𝐺). Suppose that𝑒is neither an edge of 𝐾1,𝑞nor  an internal 

edge of a double star. Then by Theorem 2.12,𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑞 − 2 , which is a contradiction.Therefore𝑒 is an edge of 

𝐾1,𝑞  or 𝑒is an internal edge of a double star.∎ 

Theorem 2.15  

Let 𝐺 be a connected graph with 𝑞 ≥  4, which is not a cycle and not a tree and let 𝐶(𝐺) be the length of the longest 

cycle. Then 𝑑𝑒𝑓𝑒𝑣  𝐺 ≤ 𝑞 − 𝐶 𝐺 + 1 for some 𝑒 ∈ 𝐸(𝐺). 

 

Proof.  Let 𝐶(𝐺) denote the length of the longest cycle in 𝐺 and 𝐶 be the cycle of length 𝑘. 
Let 𝐶: 𝑣1, 𝑣2 , 𝑣3 , … , 𝑣𝑘  be a cycle, 𝑘 ≥  3. Since 𝐺 is not a cycle, there exists a vertex 𝑣in 𝐺 such that 𝑣 is not a 

vertex of 𝐶 and which is adjacent to 𝑣1 , say. Let 𝑒 be an edge of 𝐶. Let 𝑆(𝑒)  =  𝐸(𝐺) –  {𝐸(𝐶) –  𝑒}. Clearly 𝑆(𝑒) is 

an edge fixing edge-to-vertex detour set of 𝑒of𝐺 so that 𝑑𝑒𝑓𝑒𝑣  𝐺 ≤ 𝑞 − 𝐶 𝐺 + 1 .     ∎ 

 

Theorem 2.16 

Let 𝐺 be a connected graph of size 𝑞 ≥  3 which is not a double star and 𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑞 − 2for some edge 𝑒of 𝐺. 

Then 𝐺 is unicyclic. 

 

Proof. Suppose that 𝐺 is not unicyclic. Then 𝐺 contains more than one cycle. 

 Let 𝐶1 and 𝐶2 be the two cycles of 𝐺. By Theorem 2.15,  𝐶1 =   𝐶2 = 3. 
 

Case 1.   Suppose that 𝐶1 and 𝐶2have exactly one vertex, say, 𝑣in common. 

 Let 𝑒 =  𝑢𝑣 be an edge of 𝐶1and let 𝑆(𝑒)  =  𝐸(𝐺) –  𝐸(𝐶) – {𝑒, 𝑓}, where 𝑓 =  𝑣𝑤, where 𝑤 ∈ 𝑉(𝐶2). 
Then 𝑆(𝑒) is an edge fixing edge-to-vertex detour set of an edge 𝑒 of 𝐺 so that 𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑞 − 3, which is a 

contradiction. 

 

Case 2.Suppose that 𝐶1 and 𝐶2have a common edge, say, 𝑢𝑣. 

Let 𝑒 =  𝑢𝑣 and let 𝑆(𝑒)  =  𝐸(𝐺) – {𝑒, 𝑢𝑤, 𝑢𝑧}, where 𝑤 ∈ 𝑉(𝐶1) and 𝑧 ∈ 𝑉(𝐶2). Then 𝑆(𝑒) is an edge fixing 

edge-to-vertex detour set of 𝑒of𝐺 so that  𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑞 − 3, which is a contradiction. 

 

Case 3.Suppose that 𝐶1 and 𝐶2 are connected by a path 𝑃. 

Suppose that 𝑒 =  𝑥𝑢 be an edge of 𝐶1, where 𝑥 is a vertex common to 𝐶1 are 𝑃 and let 

𝑆(𝑒) = 𝐸(𝐺) – {𝑒, 𝑥𝑢1 , 𝑥𝑥1 , 𝑓},where 𝑥𝑢1 ∈ 𝐸(𝐶1) such that 𝑢𝑢1 , 𝑥𝑥1 ∈ 𝐸(𝑃) and 𝑓 ∈ 𝐸(𝐶2). Then clearly 𝑆(𝑒) is 

an edge fixing edge-to-vertex detour set of 𝑒 of 𝐺 so that 𝑑𝑒𝑓𝑒𝑣  𝐺 ≤ 𝑞 − 4, which is a contradiction. 

 ∎ 
 

Theorem 2.17 

For a connected graph 𝐺, 𝑑𝑒𝑣 (𝐺 ) ≤ 𝑑𝑒𝑓𝑒𝑣 (𝐺) +  1. 

 

Proof.  Let 𝑒 be an edge of 𝐺 and 𝑆(𝑒) be the minimum edge fixing edge-to-vertex detour set of 𝑒of 𝐺. Then 

𝑆(𝑒)  ∪ {𝑒} is an edge-to-vertex detour set of 𝑒 of 𝐺 so that 𝑑𝑒𝑣 (𝐺) ≤   |𝑆(𝑒)  ∪ {𝑒}|  = 𝑑𝑒𝑓𝑒𝑣 (𝐺) +  1.   ∎ 

 

Remark 2. 18  

The bound in Theorem 2.17 is sharp. For the cycle 𝐶𝑝 , 𝑑𝑒𝑓𝑒𝑣 (𝐶𝑝) = 1for every 𝑒  𝐸(𝐺) and 𝑑𝑒𝑣 (𝐺)  =  2  so that 

𝑑𝑒𝑣 (𝐺)  = 𝑑𝑒𝑓𝑒𝑣 (𝐺) +  1.Also the inequality in the Theorem  2.17 strict. For the graph 𝐺given in Figure 2.2, let 

𝑒 =  𝑢3𝑢4 . Then 𝑆(𝑒)  = {𝑢1𝑢2 , 𝑢7 , 𝑢8} is an edge fixing edge-to-vertex detour set of e of 𝐺 so that 𝑑𝑒𝑓𝑒𝑣  𝐺 = 2. 

Also 𝑑𝑒𝑣 (𝐺)  =  2. Hence 𝑑𝑒𝑣  𝐺 < 𝑑𝑒𝑓𝑒𝑣 (𝐺) +  1.  
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Theorem 2.19 

For positive integers 𝑅,𝐷and 𝑙 ≥  2with 𝑅 <  𝐷 ≤ 2𝑅, there exists a connected graph 𝐺 with 𝑟𝑎𝑑(𝐺)  =
 𝑅, 𝑑𝑖𝑎𝑚(𝐺)  =  𝐷 and 𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑙 for some 𝑒 ∈ 𝐸(𝐺). 

 

Proof.When 𝑅 =  1, we let 𝐺 =  𝐾1,𝑙. Then the result follows from Theorem 2.7. Let 𝑅 ≥  2. Let 

𝐶𝑅+1: 𝑣1 , 𝑣2 ,… , 𝑣𝑅+1 be a cycle of length 𝑅 +  1 and let 𝑃𝐷−𝑅 : 𝑢0 , 𝑢1 , 𝑢2 , … , 𝑢𝐷−𝑅 be a path of length 𝐷 –  𝑅. Let 𝐻 

be a graph obtained from 𝐶𝑅+1 and 𝑃𝐷−𝑅  by identifying 𝑣1 in 𝐶𝑅+1 and 𝑢0in 𝑃𝐷−𝑅 . Now add 𝑙 –  2 new vertices 

𝑤1 , 𝑤2 , … , 𝑤𝑙−2 to 𝐻 and join each 𝑤𝑖  (1 ≤ 𝑖 < 𝑙 –  2) to the vertex 𝑢𝐷−𝑅_1 and obtain the graph 𝐺 as shown in 

Figure 2.3. Then 𝑟𝑎𝑑𝐷(𝐺)  =  𝑅and 𝑑𝑖𝑎𝑚𝐷(𝐺)  =  𝐷. Let 

𝑆 =  {𝑢𝐷−𝑅−1𝑢𝐷−𝑅 , 𝑢𝐷−𝑅−1𝑤1 , 𝑢𝐷−𝑅−1𝑤2 , … , 𝑢𝐷−𝑅−1𝑤𝑙−2} be the set of end-edges of 𝐺. Let 𝑒be a non-pendant cut 

edge of 𝐺.By Theorem 2.4, 𝑆 is a subset of every edge fixing edge-to-vertex detour set of 𝐺. It is clear that 𝑆 is not 

an edge fixing edge-to-vertex detour set of 𝐺 and so 𝑑𝑒𝑓𝑒𝑣 (𝐺) ≥ 𝑙.  However 𝑆 ∪ {𝑣1𝑣2} is an edge fixing edge-to-

vertex detour set of 𝑒 of 𝐺 and so that 𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑙.   ∎ 

 
Theorem 2.20  

For any positive integer 𝑎, 1 ≤ 𝑎 ≤ 𝑞 –  1, there exists a connected graph 𝐺 of size 𝑞 such that 𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑎, for 

some edge 𝑒 ∈ 𝐸(𝐺). 
 

Proof. Let 𝐺 be a connected graph. 
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Case 1.Let 𝑎 =  𝑞 –  1. 
For the star 𝐺 =  𝐾1,𝑞 , by Theorem 6.7,𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑞 − 1 = 𝑎 for every edge 𝑒 ∈ 𝐸(𝐺). 
 

Case 2.𝑎 =  1 

Let 𝐺 be a path of length 𝑞 and 𝑒 be an pendant-edge of 𝐺. Then by Theorem 2.7, 𝑑𝑒𝑓𝑒𝑣  𝐺 = 1 = 𝑎. 

 

Case 3.1 < 𝑎 < 𝑞 –  1 

Let 𝐺 be a tree with 𝑎 end-edges and 𝑞 –  𝑎 internal edges and let 𝑒 be an internal edge of 𝐺. Then by Theorem 2.7, 

𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑎. ∎ 

In view of Theorem 2.17, we have the following realization result. 

 

Theorem 2.21   

For every pair of positive integers with 2 ≤ 𝑎 ≤ 𝑏, there exists a connected graph 𝐺 such that 𝑑𝑒𝑣 (𝐺)  =  𝑎 and 

𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑏 for some edge 𝑒 𝐸(𝐺). 

 

Proof.   Let 𝐺 be a connected graph. 

 

Case 1.𝑎 =  𝑏 
Let 𝐺 be a double star with 𝑎 end-edges and let 𝑒 be the cut-edge of 𝐺. Then by Theorem 2.8, 𝑑𝑒𝑓𝑒𝑣  𝐺 = 𝑎. Also 

by Theorem 1.2, 𝑑𝑒𝑣  𝐺 =  𝑎. 
 

Case 2.2 ≤ 𝑎 < 𝑏 

Let 𝑃 ∶ 𝑢1 , 𝑢2 , 𝑢3 , 𝑢4 , 𝑢5 , 𝑢6 , 𝑢7 ,be a path of order 7. Let 𝑃𝑖 ∶ 𝑥𝑖𝑦𝑖(1 ≤ 𝑖 ≤ 𝑏 – 𝑎 +  1) be a copy of a path of order 

2. Let 𝐻 be a graph obtained from the path on 𝑃and𝑃𝑖  by joining 𝑢1 with each 𝑥𝑖(1 ≤ 𝑖 ≤ 𝑏 –  𝑎 +  1) and 𝑢7with 

𝑦𝑖(1 ≤ 𝑖 ≤ 𝑏 –  𝑎 +  1). Let 𝐺 be the graph obtained from 𝐻 by adding new vertices 𝑧1 , 𝑧2 , … , 𝑧𝑎−1 and joining 

each 𝑧𝑖(1 ≤ 𝑖 ≤ 𝑎 −  1)with 𝑢7 .. The graph 𝐺 is shown in Figure 2.4. First show that 𝑑𝑒𝑣 (𝐺)  =  𝑎. Let 𝑆 =
 {𝑧1𝑢7 , 𝑧2𝑢7 , … , 𝑧𝑎−1𝑢7} be the set of all pendant-edges of 𝐺. By Theorem 1.1, S is a subset of every edge-t0-

vertexdetour set of 𝑒of𝐺. It is clear that 𝑆 is not an edge-to-vertex detour set of 𝐺 and so 𝑑𝑒𝑣 (𝐺) ≥ 𝑎 −  1.However 

𝑆 =  𝑆 ∪ {𝑢6𝑢7} is an edge-to-vertex detour set of 𝐺. Thus 𝑑𝑒𝑣 (𝐺)  =  𝑎. Let 𝑒 =  𝑢1𝑥1. By Theorem2.4, 

𝑆 =  {𝑧1𝑢7 , 𝑧2𝑢7 , … , 𝑧𝑎−1𝑢7} is a subset of every edge fixing  edge-to-vertex detour set of 𝑒 of 𝐺. It is clear that 𝑆is 

not an edge fixing edge-to-vertex detour set of 𝑒of 𝐺. It is easily verified that every edge fixing edge-to-vertex 

detour set of 𝑒 of 𝐺contains 𝑥𝑖𝑦𝑖  (2 ≤ 𝑖 ≤ 𝑏 – 𝑎 +  1) and so 𝑑𝑒𝑓𝑒𝑣 (𝐺) ≥ 𝑎 –  1 +  𝑏 –  𝑎 +  1 =  𝑏. Let 𝑆(𝑒)  =

 𝑆 ∪ {𝑥1𝑦1, 𝑥2𝑦2 ,… , 𝑥𝑏–𝑎+1 , 𝑦𝑏–𝑎 +1}. ThenS(e) is an edge fixing edge-to-vertex detour set of e of G so that 

𝑑𝑒𝑓𝑒𝑣 (G)= b. Hence the proof. ∎ 
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